Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
PLoS Med ; 19(5): e1003953, 2022 05.
Article in English | MEDLINE | ID: covidwho-1865330

ABSTRACT

BACKGROUND: Heterologous boost vaccination has been proposed as an option to elicit stronger and broader, or longer-lasting immunity. We assessed the safety and immunogenicity of heterologous immunization with a recombinant adenovirus type-5-vectored Coronavirus Disease 2019 (COVID-19) vaccine (Convidecia, hereafter referred to as CV) and a protein-subunit-based COVID-19 vaccine (ZF2001, hereafter referred to as ZF). METHODS AND FINDINGS: We conducted a randomized, observer-blinded, placebo-controlled trial, in which healthy adults aged 18 years or older, who have received 1 dose of Convidecia, with no history of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection, were recruited in Jiangsu, China. Sixty participants were randomly assigned (2:1) to receive either 1 dose of ZF2001 or placebo control (trivalent inactivated influenza vaccine (TIV)) administered at 28 days after priming, and received the third injection with ZF2001 at 5 months, referred to as CV/ZF/ZF (D0-D28-M5) and CV/ZF (D0-M5) regimen, respectively. Sixty participants were randomly assigned (2:1) to receive either 1 dose of ZF2001 or TIV administered at 56 days after priming, and received the third injection with ZF2001 at 6 months, referred to as CV/ZF/ZF (D0-D56-M6) and CV/ZF (D0-M6) regimen, respectively. Participants and investigators were masked to the vaccine received but not to the boosting interval. Primary endpoints were the geometric mean titer (GMT) of neutralizing antibodies against wild-type SARS-CoV-2 and 7-day solicited adverse reactions. The primary analysis was done in the intention-to-treat population. Between April 7, 2021 and May 6, 2021, 120 eligible participants were randomly assigned to receive ZF2001/ZF2001 (n = 40) or TIV/ZF2001 (n = 20) 28 days and 5 months post priming, and receive ZF2001/ZF2001 (n = 40) or TIV/ZF2001 (n = 20) 56 days and 6 months post priming. Of them, 7 participants did not receive the third injection with ZF2001. A total of 26 participants (21.7%) reported solicited adverse reactions within 7 days post boost vaccinations, and all the reported adverse reactions were mild, with 13 (32.5%) in CV/ZF/ZF (D0-D28-M5) regimen, 7 (35.0%) in CV/ZF (D0- M5) regimen, 4 (10.0%) in CV/ZF/ZF (D0-D56-M6) regimen, and 2 (10.0%) in CV/ZF (D0-M6) regimen, respectively. At 14 days post first boost, GMTs of neutralizing antibodies in recipients receiving ZF2001 at 28 days and 56 days post priming were 18.7 (95% CI 13.7 to 25.5) and 25.9 (17.0 to 39.3), respectively, with geometric mean ratios of 2.0 (1.2 to 3.5) and 3.4 (1.8 to 6.4) compared to TIV. GMTs at 14 days after second boost of neutralizing antibodies increased to 107.2 (73.7 to 155.8) in CV/ZF/ZF (D0-D28-M5) regimen and 141.2 (83.4 to 238.8) in CV/ZF/ZF (D0-D56-M6) regimen. Two-dose schedules of CV/ZF (D0-M5) and CV/ZF (D0-M6) induced antibody levels comparable with that elicited by 3-dose schedules, with GMTs of 90.5 (45.6, 179.8) and 94.1 (44.0, 200.9), respectively. Study limitations include the absence of vaccine effectiveness in a real-world setting and current lack of immune persistence data. CONCLUSIONS: Heterologous boosting with ZF2001 following primary vaccination with Convidecia is more immunogenic than a single dose of Convidecia and is not associated with safety concerns. These results support flexibility in cooperating viral vectored and recombinant protein vaccines. TRIAL REGISTRATION: Study on Heterologous Prime-boost of Recombinant COVID-19 Vaccine (Ad5 Vector) and RBD-based Protein Subunit Vaccine; ClinicalTrial.gov NCT04833101.


Subject(s)
COVID-19 , Influenza Vaccines , Adenoviridae/genetics , Adult , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Double-Blind Method , Humans , Immunogenicity, Vaccine , SARS-CoV-2 , Vaccination , Vaccines, Synthetic/adverse effects
2.
EBioMedicine ; 76: 103861, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1734342

ABSTRACT

BACKGROUND: Since late 2019, SARS-CoV-2 infection has resulted in COVID-19 accompanied by diverse clinical manifestations. However, the underlying mechanism of how SARS-CoV-2 interacts with host and develops multiple symptoms is largely unexplored. METHODS: Bioinformatics analysis determined the sequence similarity between SARS-CoV-2 and human genomes. Diverse fragments of SARS-CoV-2 genome containing Human Identical Sequences (HIS) were cloned into the lentiviral vector. HEK293T, MRC5 and HUVEC were infected with laboratory-packaged lentivirus or transfected with plasmids or antagomirs for HIS. Quantitative RT-PCR and chromatin immunoprecipitation assay detected gene expression and H3K27ac enrichment, respectively. UV-Vis spectroscopy assessed the interaction between HIS and their target locus. Enzyme-linked immunosorbent assay evaluated the hyaluronan (HA) levels of culture supernatant and plasma of COVID-19 patients. FINDINGS: Five short sequences (24-27 nt length) sharing identity between SARS-CoV-2 and human genome were identified. These RNA elements were highly conserved in primates. The genomic fragments containing HIS were predicted to form hairpin structures in silico similar to miRNA precursors. HIS may function through direct genomic interaction leading to activation of host enhancers, and upregulation of adjacent and distant genes, including cytokine genes and hyaluronan synthase 2 (HAS2). HIS antagomirs and Cas13d-mediated HIS degradation reduced HAS2 expression. Severe COVID-19 patients displayed decreased lymphocytes and elevated D-dimer, and C-reactive proteins, as well as increased plasma hyaluronan. Hymecromone inhibited hyaluronan production in vitro, and thus could be further investigated as a therapeutic option for preventing severe outcome in COVID-19 patients. INTERPRETATION: HIS of SARS-CoV-2 could promote COVID-19 progression by upregulating hyaluronan, providing novel targets for treatment. FUNDING: The National Key R&D Program of China (2018YFC1005004), Major Special Projects of Basic Research of Shanghai Science and Technology Commission (18JC1411101), and the National Natural Science Foundation of China (31872814, 32000505).


Subject(s)
Gene Regulatory Networks/genetics , Genome, Human , Hyaluronic Acid/metabolism , RNA, Viral/genetics , SARS-CoV-2/genetics , Antagomirs/metabolism , Argonaute Proteins/genetics , Base Sequence , COVID-19/pathology , COVID-19/virology , Cell Line , Disease Progression , Enhancer Elements, Genetic/genetics , Humans , Hyaluronan Synthases/genetics , Hyaluronan Synthases/metabolism , Hyaluronic Acid/blood , MicroRNAs/genetics , RNA, Viral/chemistry , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL